398 research outputs found

    Dark matter directional detection with MIMAC

    Full text link
    MiMac is a project of micro-TPC matrix of gaseous (He3, CF4) chambers for direct detection of non-baryonic dark matter. Measurement of both track and ionization energy will allow the electron-recoil discrimination, while access to the directionnality of the tracks will open a unique way to distinguish a geniune WIMP signal from any background. First reconstructed tracks of 5.9 keV electrons are presented as a proof of concept.Comment: 4 pages, proc. of the 44th Rencontres De Moriond: Electroweak Interactions And Unified Theories, 7-14 Mar 2009, La Thuile, Ital

    Causes of prehospital misinterpretations of ST elevation myocardial infarction

    Get PDF
    Objectives: To determine the causes of software misinterpretation of ST elevation myocardial infarction (STEMI) compared to clinically identified STEMI to identify opportunities to improve prehospital STEMI identification. Methods: We compared ECGs acquired from July 2011 through June 2012 using the LIFEPAK 15 on adult patients transported by the Los Angeles Fire Department. Cases included patients ≥18 years who received a prehospital ECG. Software interpretation of the ECG (STEMI or not) was compared with data in the regional EMS registry to classify the interpretation as true positive (TP), true negative (TN), false positive (FP), or false negative (FN). For cases where classification was not possible using registry data, 3 blinded cardiologists interpreted the ECG. Each discordance was subsequently reviewed to determine the likely cause of misclassification. The cardiologists independently reviewed a sample of these discordant ECGs and the causes of misclassification were updated in an iterative fashion. Results: Of 44,611 cases, 50% were male (median age 65; inter-quartile range 52–80). Cases were classified as 482 (1.1%) TP, 711 (1.6%) FP, 43371 (97.2%) TN, and 47 (0.11%) FN. Of the 711 classified as FP, 126 (18%) were considered appropriate for, though did not undergo, emergent coronary angiography, because the ECG showed definite (52 cases) or borderline (65 cases) ischemic ST elevation, a STEMI equivalent (5 cases) or ST-elevation due to vasospasm (4 cases). The sensitivity was 92.8% [95% CI 90.6, 94.7%] and the specificity 98.7% [95% CI 98.6, 98.8%]. The leading causes of FP were ECG artifact (20%), early repolarization (16%), probable pericarditis/myocarditis (13%), indeterminate (12%), left ventricular hypertrophy (8%), and right bundle branch block (5%). There were 18 additional reasons for FP interpretation (<4% each). The leading causes of FN were borderline ST-segment elevations less than the algorithm threshold (40%) and tall T waves reducing the ST/T ratio below threshold (15%). There were 11 additional reasons for FN interpretation occurring ≤3 times each. Conclusion: The leading causes of FP automated interpretation of STEMI were ECG artifact and non-ischemic causes of ST-segment elevation. FN were rare and were related to ST-segment elevation or ST/T ratio that did not meet the software algorithm threshold

    In situ measurement of the electron drift velocity for upcoming directional Dark Matter detectors

    Full text link
    Three-dimensional track reconstruction is a key issue for directional Dark Matter detection and it requires a precise knowledge of the electron drift velocity. Magboltz simulations are known to give a good evaluation of this parameter. However, large TPC operated underground on long time scale may be characterized by an effective electron drift velocity that may differ from the value evaluated by simulation. In situ measurement of this key parameter is hence needed as it is a way to avoid bias in the 3D track reconstruction. We present a dedicated method for the measurement of the electron drift velocity with the MIMAC detector. It is tested on two gas mixtures: CF4 and CF4 + CHF3. The latter has been chosen for the MIMAC detector as we expect that adding CHF3 to pure CF4 will lower the electron drift velocity. This is a key point for directional Dark Matter as the track sampling along the drift field will be improved while keeping almost the same Fluorine content of the gas mixture. We show that the drift velocity at 50 mbar is reduced by a factor of about 5 when adding 30% of CHF3.Comment: 19 pages, 14 figures. Minor corrections, matches published version in JINS

    Measurement of the electron drift velocity for directional dark matter detectors

    Full text link
    Three-dimensional track reconstruction is a key issue for directional Dark Matter detection. It requires a precise knowledge of the electron drift velocity. Magboltz simulations are known to give a good evaluation of this parameter. However, large TPC operated underground on long time scale may be characterized by an effective electron drift velocity that may differ from the value evaluated by simulation. In situ measurement of this key parameter is hence a way to avoid bias in the 3D track reconstruction. We present a dedicated method for the measurement of the electron drift velocity with the MIMAC detector. It is tested on two gas mixtures : CF4\rm CF_4 and CF4+CHF3\rm CF_4+CHF_3. We also show that adding CHF3\rm CHF_3 allows us to lower the electron drift velocity while keeping almost the same Fluorine content of the gas mixture.Comment: Proceedings of the 4th international conference on Directional Detection of Dark Matter (CYGNUS 2013), 10-12 June 2013, Toyama, Japa

    Development of a front end ASIC for Dark Matter directional detection with MIMAC

    Full text link
    A front end ASIC (BiCMOS-SiGe 0.35 \mum) has been developed within the framework of the MIMAC detector project, which aims at directional detection of non-baryonic Dark Matter. This search strategy requires 3D reconstruction of low energy (a few keV) tracks with a gaseous \muTPC. The development of this front end ASIC is a key point of the project, allowing the 3D track reconstruction. Each ASIC monitors 16 strips of pixels with charge preamplifiers and their time over threshold is provided in real time by current discriminators via two serializing LVDS links working at 320 MHz. The charge is summed over the 16 strips and provided via a shaper. These specifications have been chosen in order to build an auto triggered electronics. An acquisition board and the related software were developed in order to validate this methodology on a prototype chamber. The prototype detector presents an anode where 2 x 96 strips of pixels are monitored.Comment: 12 pages, 10 figure

    Development and validation of a 64 channel front end ASIC for 3D directional detection for MIMAC

    Full text link
    A front end ASIC has been designed to equip the {\mu}TPC prototype developed for the MIMAC project, which requires 3D reconstruction of low energy particle tracks in order to perform directional detection of galactic Dark Matter. Each ASIC is able to monitor 64 strips of pixels and provides the "Time Over Threshold" information for each of those. These 64 digital informations, sampled at a rate of 50 MHz, can be transferred at 400MHz by eight LVDS serial links. Eight ASIC were validated on a 2x256 strips of pixels prototype.Comment: proceedings of TWEPP-11, Vienna, Austria, 26-30 September 201

    Data acquisition electronics and reconstruction software for directional detection of Dark Matter with MIMAC

    Full text link
    Directional detection of galactic Dark Matter requires 3D reconstruction of low energy nuclear recoils tracks. A dedicated acquisition electronics with auto triggering feature and a real time track reconstruction software have been developed within the framework of the MIMAC project of detector. This auto-triggered acquisition electronic uses embedded processing to reduce data transfer to its useful part only, i.e. decoded coordinates of hit tracks and corresponding energy measurements. An acquisition software with on-line monitoring and 3D track reconstruction is also presented.Comment: 17 pages, 12 figure
    • …
    corecore